Manim é uma biblioteca (open source) de animação criadas pelo 3Blue1Brown especificamente para os seus vídeos sobre tópicos de matemática.

Quando vi seus vídeos fiquei impressionado com a estética, muito superior aos típicos khan academy ou às explicações em lousas e papel que acha-se aos montes no youtube, e fui pesquisar como eram produzidos. Felizmente, o autor decidiu compartilhar o código fonte (apesar de enfatizar que seu foco não é criar uma bblioteca robusta. mas implementar o que precisa para os seus vídeos). O sistema consiste em usar python para criar objetos geométricos, algébricos e textos que serão compilados em latex e então animados. Bem engenhoso!

Os vídeos abaixo são minhas duas primeiras tentaticas em usar a biblioteca. Coisa simples, mas potencialmente instrutivo pra quem esteja aprendendo.

O melhor tutorial sobre o Manim que encontrei foi feito pelo Talking Physics e vale a pena ler com calma e por inteiro.

O processo de criação de um vídeo consiste basicamente em:

- Programar a animação em python, criando os objetos, posicionando-os e então animando um a um. O primeiro vídeo da playlist acima foi gerado por este código;
- Compilar cada cena;
- Fazer uma última edição para juntar cenas ou adicionar áudio, se for o caso.

Pretendo montar mais vídeos com a biblioteca em breve e se o fizer, postarei por aqui.

I finally found a pizza that deserves to be publicly recommended: Corner Stone Pizza, at Sherwood

The place is quite peculiar. Small and simple, but the pizza is amazingly well executed! Thin crusty dough with a delicious fluffy border and great combinations for toppings. They only have about 10 options, but all sounded delicious and with a good degree of variation. The price is also very good.

I only went there once and they were not serving drinks, even though they suggested I could buy something near and bring it to drink at the place. It is clearly a independent business with a strong local identity: no need of signs saying "Neapolitan pizza", just a very well crafted product.

Mathematics Teaching has just published my review of the book Mathematical Imagery. For editorial reasons, the review was shortened but they authorized the publication of the full version online and here it is.

Initially, the book focuses on 5 processes that the authors identify as related to imagery, keeping in mind the almost self-evident but still very oblivious perception that one does not learn just by looking at an image but has to do some work on it. The processes are: Reconstruction/Construction (Deconstruction?), Moving from imagery to abstraction/symbolism, Awareness of awareness, Stressing and ignoring, and Images that provoke a need for…. The authors do not claim the list is exhaustive, but claim it illustrates, with examples of tasks and experiences, the types of process that may lay hidden behind imagery when it is used in mathematics classroom as more than just mere illustration.

The most important aspect of the book, in my opinion, is the fact that the authors do not evoke the well-known instructional approach of Concrete-Pictorial-Abstract (or any of its variations). Instead, the authors place imagery by itself as a central issue in teaching and learning mathematics and use it as a springboard to promote other skills, such as communication (what do you see in the image?), pattern seeking (what would come next?) and generalization (can you extend the image?).

This approach to imagery is coherent with the common view among mathematicians that there is something visual behind mathematical thinking and discovery; something that is often related to imagination, that has a more holistic character than symbolic representations and formal reasoning. But it is also consistent with new findings suggesting that our brains seem to rely on essentially visual models to represent basic mathematics concepts, such as a number line to represent quantities.

Beyond that, while reading the book something else got my attention. Something subliminal that resonated with the feeling I got after John Mason’s seminar “Teaching More by Teaching Less - Getting Learners to Make Use of Their Natural Powers” in November 2015. I am going to call it the de-numeration of mathematics. Despite the fact that several activities suggested in the second part of the book involve actual numbers, they are never central neither in the question nor in the solution methods I imagined while trying to solve the activities. It feels that the authors are saying, and I deeply agree with them, that there is a lot of mathematics that can be done without numbers or, more precisely, without arithmetic skills and knowledge.

This view seems to be especially relevant when we think about students struggling with prior mathematical knowledge. I would say that the approach suggested in the book offers a way out of the typical situation where a teacher avoids a topic because he has the impression that the students do not master the pre-requisites well enough. This seems to be the reason why students placed in low sets are often stuck revisiting the same topics over and over again. I do understand the dilemma; in a subject so hierarchically structured as (academic) mathematics, how can I move to a new topic if students are not fluent enough with the previous? I believe this book hints at an intriguing solution: why not do some de-numerated mathematics and, progressively, build new topics on the top of such knowledge? An interesting example is given by Louise Orr and her proposal of an algebraic model using Cuisenaire Rods.

This process of de-numerate mathematics could be a path to reduce the frustration caused by difficulties with times-tables and other arithmetic skills and to promote imagery as well as other visual skills, that are knowingly correlated to mathematical achievement and choice of STEM carriers.

The second part of the book consists of more than forty well illustrated images accompanied by prompts and questions to promote discussions that starts in what can be seen in the images and drifts to topics ranging from geometry, arithmetic, algebra, number theory and so on. All low threshold and high ceiling ideas. In conclusion, the authors say that:

We suspect that many successful mathematicians develop their own imagery for mathematical processes and, in the absence of such imagery, others are left mystified by where mathematical insight comes from. (p. 35)

If you agree with that proposal, this book offers a rich and intriguing set of images, tasks, experiences and thoughts to inspire you to explore a more de-numerated mathematics.

Comic strip straight from xkcd: https://xkcd.com/2025/

PS: if you do not know xkcd, there is a hidden joke when you leave your mouse over the image for a couple of seconds.

begin ... prev 1 2 3 4 5